7 research outputs found

    Towards lightweight convolutional neural networks for object detection

    Full text link
    We propose model with larger spatial size of feature maps and evaluate it on object detection task. With the goal to choose the best feature extraction network for our model we compare several popular lightweight networks. After that we conduct a set of experiments with channels reduction algorithms in order to accelerate execution. Our vehicle detection models are accurate, fast and therefore suit for embedded visual applications. With only 1.5 GFLOPs our best model gives 93.39 AP on validation subset of challenging DETRAC dataset. The smallest of our models is the first to achieve real-time inference speed on CPU with reasonable accuracy drop to 91.43 AP.Comment: Submitted to the International Workshop on Traffic and Street Surveillance for Safety and Security (IWT4S) in conjunction with the 14th IEEE International Conference on Advanced Video and Signal based Surveillance (AVSS 2017

    The development of preschoolers’ financial literacy in the cooperation of the kindergarten and the family

    No full text
    The article introduces the study of the development of preschoolers’ financial and economic literacy in the context of cooperation between the kindergarten and the parents. The authors analyze the relevance and the need to teach children the basics of economics from an early age, it is emphasized that children face and deal with various economic concepts early, and the task of adults is to develop the basis of children’s economic thinking. The authors consider the foundations of financial literacy and a successful solution to this task in unity with morallabor education. The article describes the diagnostics, form, and control stages of the experiment in work with parents and children in the development of basic financial and economic literacy. The review of the stages covers the results of the diagnostics, an activity plan with parents and children, the final results of testing the developed approaches. In the content of economic education, the authors include such important tasks as the development of ideas about the professional activity of grown-ups, the family budget, money, advertising, the development of useful skills and habits in everyday life, etc. It is noted that rationally selected methods and means of education make it possible to introduce the child to the world of economics, to master complex financial categories and relations. The authors proved that the development of the elementary financial literacy of children is possible only in the cooperation and close interaction with the family

    Biocompatible Nanocomposites Based on Poly(styrene-block-isobutylene-block-styrene) and Carbon Nanotubes for Biomedical Application

    No full text
    In this study, we incorporated carbon nanotubes (CNTs) into poly(styrene-block-isobutylene-block-styrene) (SIBS) to investigate the physical characteristics of the resulting nanocomposite and its cytotoxicity to endothelial cells. CNTs were dispersed in chloroform using sonication following the addition of a SIBS solution at different ratios. The resultant nanocomposite films were analyzed by X-ray microtomography, optical and scanning electron microscopy; tensile strength was examined by uniaxial tension testing; hydrophobicity was evaluated using a sessile drop technique; for cytotoxicity analysis, human umbilical vein endothelial cells were cultured on SIBS–CNTs for 3 days. We observed an uneven distribution of CNTs in the polymer matrix with sporadic bundles of interwoven nanotubes. Increasing the CNT content from 0 wt% to 8 wt% led to an increase in the tensile strength of SIBS films from 4.69 to 16.48 MPa. The engineering normal strain significantly decreased in 1 wt% SIBS–CNT films in comparison with the unmodified samples, whereas a further increase in the CNT content did not significantly affect this parameter. The incorporation of CNT into the SIBS matrix resulted in increased hydrophilicity, whereas no cytotoxicity towards endothelial cells was noted. We suggest that SIBS–CNT may become a promising material for the manufacture of implantable devices, such as cardiovascular patches or cusps of the polymer heart valve

    A Brief Report on an Implantation of Small-Caliber Biodegradable Vascular Grafts in a Carotid Artery of the Sheep

    No full text
    The development of novel biodegradable vascular grafts of a small diameter (<6 mm) is an unmet clinical need for patients requiring arterial replacement. Here we performed a pre-clinical study of new small-caliber biodegradable vascular grafts using a sheep model of carotid artery implantation. The 4 mm diameter vascular grafts were manufactured using a mix of polyhydroxybutyrate/valerate and polycaprolactone supplemented with growth factors VEGF, bFGF and SDF-1α (PHBV/PCL-GFmix) and additionally modified by a polymer hydrogel coating with incorporation of drugs heparin and iloprost (PHBV/PCL-GFmixHep/Ilo). Animals with carotid artery autograft implantation and those implanted with clinically used GORE-TEX® grafts were used as control groups. We observed that 24 h following surgery, animals with carotid artery autograft implantation showed 87.5% patency, while all the PHBV/PCL-GFmix and GORE-TEX® grafts displayed thrombosis. PHBV/PCL-GFmixHep/Ilo grafts demonstrated 62.5% patency 24 h following surgery and it had remained at 50% 1 year post-operation. All the PHBV/PCL grafts completely degraded less than 1 year following surgery and were replaced by de novo vasculature without evidence of calcification. On the other hand, GORE-TEX® grafts displayed substantial amounts of calcium deposits throughout graft tissues. Thus, here we report a potential clinical usefulness of PHBV/PCL grafts upon their additional modification by growth factors and drugs to promote endothelialization and reduce thrombogenicity

    Biomaterials Based on Carbon Nanotube Nanocomposites of Poly(styrene-b-isobutylene-b-styrene): The Effect of Nanotube Content on the Mechanical Properties, Biocompatibility and Hemocompatibility

    No full text
    Nanocomposites based on poly(styrene-block-isobutylene-block-styrene) (SIBS) and single-walled carbon nanotubes (CNTs) were prepared and characterized in terms of tensile strength as well as bio- and hemocompatibility. It was shown that modification of CNTs using dodecylamine (DDA), featured by a long non-polar alkane chain, provided much better dispersion of nanotubes in SIBS as compared to unmodified CNTs. As a result of such modification, the tensile strength of the nanocomposite based on SIBS with low molecular weight (Mn = 40,000 g mol–1) containing 4% of functionalized CNTs was increased up to 5.51 ± 0.50 MPa in comparison with composites with unmodified CNTs (3.81 ± 0.11 MPa). However, the addition of CNTs had no significant effect on SIBS with high molecular weight (Mn~70,000 g mol−1) with ultimate tensile stress of pure polymer of 11.62 MPa and 14.45 MPa in case of its modification with 1 wt% of CNT-DDA. Enhanced biocompatibility of nanocomposites as compared to neat SIBS has been demonstrated in experiment with EA.hy 926 cells. However, the platelet aggregation observed at high CNT concentrations can cause thrombosis. Therefore, SIBS with higher molecular weight (Mn~70,000 g mol−1) reinforced by 1–2 wt% of CNTs is the most promising material for the development of cardiovascular implants such as heart valve prostheses

    Biocompatibility of Small-Diameter Vascular Grafts in Different Modes of RGD Modification

    No full text
    Modification with Arg-Gly-Asp (RGD) peptides is a promising approach to improve biocompatibility of small-calibre vascular grafts but it is unknown how different RGD sequence composition impacts graft performance. Here we manufactured 1.5 mm poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) grafts modified by distinct linear or cyclic RGD peptides immobilized by short or long amine linker arms. Modified vascular prostheses were tested in vitro to assess their mechanical properties, hemocompatibility, thrombogenicity and endothelialisation. We also implanted these grafts into rat abdominal aortas with the following histological examination at 1 and 3 months to evaluate their primary patency, cellular composition and detect possible calcification. Our results demonstrated that all modes of RGD modification reduce ultimate tensile strength of the grafts. Modification of prostheses does not cause haemolysis upon the contact with modified grafts, yet all the RGD-treated grafts display a tendency to promote platelet aggregation in comparison with unmodified counterparts. In vivo findings identify that cyclic Arg-Gly-Asp-Phe-Lys peptide in combination with trioxa-1,13-tridecanediamine linker group substantially improve graft biocompatibility. To conclude, here we for the first time compared synthetic small-diameter vascular prostheses with different modes of RGD modification. We suggest our graft modification regimen as enhancing graft performance and thus recommend it for future use in tissue engineering
    corecore